Bootstrap-based design of residual control charts

نویسندگان

  • Giovanna Capizzi
  • Guido Masarotto
چکیده

One approach to monitoring autocorrelated data consists of applying a control chart to the residuals of a time series model estimated from process observations. Recent research shows that the impact of estimation error on the run length properties of the resulting charts is not negligible. In this paper a general strategy for implementing residual-based control schemes is investigated. The designing procedure uses the AR-sieve approximation assuming that the process allows an autoregressive representation of order infinity. The run length distribution is estimated using bootstrap resampling in order to account for uncertainty in the estimated parameters. Control limits that satisfy a given constraint on the false alarm rate are computed via stochastic approximation. The proposed procedure is investigated for three residual-based control charts: Generalized Likelihood Ratio (GLR), Cumulative Sum (CUSUM) and Exponentially Weighted Moving Average (EWMA). Results show that the bootstrap approach safeguards against an undesirably high rate of false alarms. In addition, the out-of-control bootstrap-charts sensitivity does not seem to be lower than that of charts designed under the assumption that the estimated model is equal to the true generating process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Bootstrap Based Algorithm for Hotelling’s T2 Multivariate Control Chart

Normality is a common assumption for many quality control charts. One should expect misleading results once this assumption is violated. In order to avoid this pitfall, we need to evaluate this assumption prior to the use of control charts which require normality assumption. However, in certain cases either this assumption is overlooked or it is hard to check. Robust control charts and bootstra...

متن کامل

Control chart based on residues: Is a good methodology to detect outliers?

The purpose of this article is to evaluate the application of forecasting models along with the use of residual control charts to assess production processes whose samples have autocorrelation characteristics. The main objective is to determine the efficiency of control charts for individual observations (CCIO) and exponentially weighted moving average (EWMA) charts when they are applied to res...

متن کامل

Bootstrap-Based T2 Multivariate Control Charts

Control charts have been used effectively for years to monitor processes and detect abnormal behaviors. However, most control charts require a specific distribution to establish their control limits. The bootstrap method is a nonparametric technique that does not rely on the assumption of a parametric distribution of the observed data. Although the bootstrap technique has been used to develop u...

متن کامل

Monitoring and Diagnosing Multistage Processes: A Review of Cause Selecting Control Charts

A review of the literature on cause selecting charts (CSCs) in multistage processes is given, with a concentration on developments which have occurred since 1993. Model based control charts and multiple cause selecting charts (MCSCs) are reviewed. Several articles based on normally and non-normally distributed outgoing quality characteristics are analyzed and important issues such as economic d...

متن کامل

A New Bootstrap Based Algorithm for Hotelling’s T2 Multivariate Control Chart

Normality is a common assumption for many quality control charts. One should expect misleading results once this assumption is violated. In order to avoid this pitfall, we need to evaluate this assumption prior to the use of control charts which require normality assumption. However, in certain cases either this assumption is overlooked or it is hard to check. Robust control charts and bootstra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007